
Journal of Computational Physics 229 (2010) 7834–7847
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Molecular simulations of electroosmotic flows in rough nanochannels

Jin Liu a,*, Moran Wang a,b, Shiyi Chen a,c, Mark O. Robbins a,d

a Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
b Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
c State Key Laboratory for Turbulence and Complex Systems and Institute for Applied Physics and Technology, College of Engineering,
Peking University, Beijing, China
d Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
a r t i c l e i n f o

Article history:
Received 24 March 2010
Received in revised form 18 June 2010
Accepted 26 June 2010
Available online 30 June 2010

Keywords:
Electrokinetic transport
PPPM method
Multi-grid method
Molecular dynamics
Electroosmotic flows
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.06.042

* Corresponding author. Present address: Departm
E-mail addresses: jinliu2@seas.upenn.edu (J. Liu)
a b s t r a c t

A highly efficient molecular dynamics algorithm for micro and nanoscale electrokinetic
flows is developed. The long-range Coulomb interactions are calculated using the Parti-
cle–Particle Particle–Mesh (P3M) approach. The Poisson equation for the electrostatic
potential is solved in physical space using an iterative multi-grid technique. After valida-
tion, the method is used to study electroosmotic flow in nanochannels with regular or ran-
dom roughness on the walls. The results show that roughness reduces the electroosmotic
flow rate dramatically even though the roughness is very small compared to the channel
width. The effect is much larger than for pressure driven flows because the driving force
is localized near the walls where the charge distribution is high. Non-Newtonian behavior
is also observed at much lower flow rates. Systematic investigation of the effect of surface
charge density and random roughness will help to better understand the mechanism of
electrokinetic transport in rough nanochannels and to design and optimize nanofluidic
devices.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Electrokinetic transport at micro/nano scales is of growing theoretical interest and practical relevance in a wide range of
applications. For example, electroosmotic transport plays an essential role in many biochemical and biophysical processes
[1,2]. Studies of dynamics in electrolyte solutions have been performed using continuum based methods that capture aver-
age behavior and are valid at large scales [3–11]. As system dimensions decrease into the nanoscale, the discrete nature of
electrical charge and the atomic structure of fluids and surfaces becomes important. This has led to increasing interest in
molecular dynamics simulations [12–17]. However, the long-range nature of the Coulomb potential between charged par-
ticles presents a significant challenge to molecular simulations. Unlike Lennard–Jones and other short-ranged potentials,
the Coulomb interaction can not be truncated, and direct summation is computationally prohibitive for the required system
sizes. As a result, tremendous effort has been devoted to developing new algorithms that efficiently treat long-range inter-
actions [18].

The most widely used method is Ewald summation, which was first introduced by Ewald in 1921 [19]. The total electro-
static potential is rewritten as a summation of three terms: a short-range term that is calculated in real space, a long-range
term that can be evaluated analytically in reciprocal space, and a constant self-interaction term. Even with an optimized
selection of parameters, the computation time still scales as N3=2

p [20], where Np is the total number of particles. This makes
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the Ewald method unsuitable for simulation of large systems. Darden et al. [21] presented the Particle Mesh Ewald (PME)
method in which the long-range interactions were calculated using the Fast Fourier Transform (FFT) technique on a mesh.
The computation time then scales as NG log(NG) where NG is the number of mesh grid points. The Fast Multipole Method
(FMM) proposed by Greengard and Rokhlin [22] can scale linearly with Np, however the implementation of the method must
be carefully designed to reach the optimized scaling [23].

Beckers et al. [24] proposed a new implementation of the Particle–Particle Particle–Mesh (P3M) method of Hockney and
Eastwood [25]. Unlike previous Fourier transform based P3M methods [25,26], they solved the Poisson equation for the elec-
trical potential in real space using the iterative Successive Over Relaxation (SOR) technique. Compared with NG log(NG) scal-
ing for the Fourier based method, this iterative scheme scales only as NG. As pointed out in Ref. [24], solving the Poisson
equation in real space had the advantages of ease of parallel implementation and flexibility for handling different types
of boundary conditions. The limitation of their scheme lies in the second charge assignment step. This dominates the com-
putation time as the mesh spacing decreases or the cutoff radius increases. They alleviate this problem by solving a diffusion
equation.

In this paper we develop a highly efficient P3M algorithm based on Beckers et al.’s work [24] and apply it to simulations of
electrokinetic flows. The algorithm uses an iterative multi-grid method to solve the Poisson equation. This multi-grid meth-
od has complexity of order NG and exhibits a much better convergence rate compared with the traditional SOR method. We
overcome the second charge assignment problem using the separability property of Gaussians.

The outline of the paper is as follows. In Section 2, we describe the numerical algorithm. This includes a description of the
P3M approach, the multi-grid Poisson solver and the treatment of boundary conditions for slablike geometries. In Section 3
we first verify the code and boundary treatments by computing the electrostatic force between two charged particles in a
channel. We then model electroosmotic flow in nanochannels with regular or random roughness on the walls. The mecha-
nism of electrokinetic transport in rough channels is investigated and discussed. Electroosmotic flow is shown to be much
more sensitive to wall roughness than pressure driven flow and to be controlled by a new length scale related to the width of
the charge distribution. A brief summary and concluding remarks are presented in Section 4.

2. Numerical algorithm

2.1. Nonequilibrium molecular dynamics

We use nonequilibrium molecular dynamics (NEMD) to simulate electroosmotic flows. The simulation domain contains
particles representing fluid molecules, ions and atoms (charged and neutral), between bounding solid walls. Flat walls are
formed from three layers of solid atoms arranged to form a (111) surface of a FCC crystal structure. Rough walls are made
by continuing the structure to different heights. All the solid atoms are held stationary throughout the simulation.

Short-range van der Waals interactions between all particles are modeled with a truncated and shifted Lennard–Jones (LJ)
potential,
VLJðrÞ ¼ 4�
r
r
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where r is the separation between particles, � the characteristic binding energy and r the atomic diameter. Setting the inter-
action to zero beyond the cutoff distance rc,LJ = 2.5r has little effect on the dynamics and reduces the computational cost [27].
We use the same r for interactions between all particles, but allow for a different interaction strength �wf between wall and
fluid atoms. Ions and fluid atoms interact with the same �.

We assign a charge of ±e (e is the electron charge 1.6 � 10�19 C) to every ion in the fluid. The innermost solid atoms, which
are closest to the fluid, are uniformly charged to ensure an electrically neutral system. The long-range Coulomb potential
between charged particles is
VCðrÞ ¼
qiqj

4p�0�rr
; ð2Þ
where qi and qj are the charges for particles i and j, respectively. The vacuum permittivity is �0 and there is a uniform dielec-
tric constant �r throughout the simulation cell. A dielectric contrast between solvent and solid could be included, but would
require information about the spatial variation of �r or use of polarizable potentials. Unlike the Lennard–Jones potential, the
Coulomb potential is not cut off because this is known to affect simulations [27]. The long-range Coulomb force makes the
numerical simulation of large systems extremely expensive.

We integrate the equations of motion for particles using the Verlet scheme [27]. The time step is Dt = 0.005s, where
s = (mr2/�)1/2 is the characteristic time of the Lennard–Jones potential. A Langevin thermostat [28] with damping rate
1.0s�1 is applied in the flow irrelevant y direction to ensure a constant temperature of T = 1.1�/kB, where kB is Boltzmann’s
constant. This temperature has been considered in many previous LJ studies and the properties of uncharged systems are
well known.

Most results are presented in dimensionless form, using �, r and s. The relative importance of Coulomb interactions de-
pends on the dielectric constant, �r. This can be parameterized in terms of the Bjerrum length lB � e2/(4p�0�rkBT), which is the



7836 J. Liu et al. / Journal of Computational Physics 229 (2010) 7834–7847
separation where electrostatic interactions equal the thermal energy. For water at room temperature �r � 80 and lB � 0.7 nm,
i.e. a couple of molecular diameters. To accentuate the role of Coulomb interactions in tests of our method, we usually con-
sider lB = 7.86r, corresponding to a dielectric constant that is roughly four times smaller than water and typical of alcohols.
Some results for a case closer to water, lB = 2.55r, are also shown for comparison.
2.2. Particle–Particle Particle–Mesh (P3M) method

As mentioned in the last section, an efficient treatment of the long-range Coulomb force between charges is essential and
has been a focus of active research for many years. We adopt the P3M method proposed by Beckers et al. [24]. In this method
the short-range interactions from both Coulomb and van der Waals forces are treated precisely with the Particle–Particle
(PP) method while the long-range interactions are calculated with the Particle–Mesh (PM) method. Both the advantages
of the accuracy of the PP method and the efficiency of the PM method can be achieved through this approach. Fig. 1 illus-
trates the typical one time-step loop of the P3M algorithm.
Equation of motion

-solve for potentials
(multigrid Poisson solver)

-calculate force on mesh

-2nd charge assignment
(Gaussian)

-direct force from Coulombic
interactions

-interpolate forces from mesh
(linear)

PM force calculation
-1st charge assignment (linear)

-update linked list tables

accelerations { n+1}
positions { n+1 }x

a

End

PP force calculation

Start

accelerations { n}
positions { n}x

a

-direct force from L-J
interactions

-apply boundary conditions
and thermostat

-update positions and
velocities (Verlet)

n=n+1

Fig. 1. One time-step loop of the P3M algorithm.
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In P3M, the total force acting on particle i is split into two parts as:
Fig. 2.
and hy

(dashed
Fi ¼ FPP
i þ FPM

i ; ð3Þ
where FPP
i represents the short-range force from nearby particles which can be computed through direct summation and FPM

i

represents the long-range force which can be calculated by solving Poisson’s equation for the electric potential on a mesh. A
two-dimensional schematic of the P3M is displayed in Fig. 2, but a three-dimensional implementation is used in our
simulations.

The short-range force FPP
i consists of two parts,
FPP
i ¼ FLJ

i þ FC
i : ð4Þ
Here FLJ
i is the total van der Waals force on particle i from all other particles
FLJ
i ¼

XXi;LJ
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where Xi,LJ is the spatial region within the LJ cutoff rc,LJ from particle i. FC
i is the total Coulomb force from particles within

Coulomb cutoff rc,C. FC
i contains two parts: the direct Coulomb force from other charged particles and a correction force

due to double counting in the short and long-range calculations. The exact form of the correction force depends on the
scheme of charge assignment and will be discussed below.

To compute the particle-mesh force FPM
i , we need to solve for the electrostatic potential / on a mesh:
r2/ðRÞ ¼ � 1
�r�0

qeðRÞ; ð6Þ
where qe(R) is the charge density at grid point R, and the charge density is defined as the grid point charge per grid cell
qeðRÞ ¼
qðRÞ

hxhyhz
; ð7Þ
where hx, hy and hz are the grid sizes in x, y and z directions, respectively.
We smooth the ion charges onto the mesh points in two steps. In the first step the charge of each ion is assigned to the

eight nearest mesh points using a linear weighting function [25]. In the second step, the grid point charges from the first step
are further spread out onto the surrounding grid points using a Gaussian assignment function. The width of the Gaussian
distribution is set at rG = rc,C/3, where rc,C corresponds to the cutoff distance for Coulomb interactions contributing to FPP

i .
The computation time for the first assignment step is negligible. The second Gaussian assignment step becomes the most

time consuming part of the calculation as we refine the mesh size or increase the P M P Coulomb interaction cutoff rc,C [24].
In Ref. [24], the authors proposed a strategy of solving a diffusion equation to alleviate the problem. In this work, we
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A two-dimensional schematic of the P3M algorithm. The simulations are actually three-dimensional. Lines indicate the mesh which has spacing hx

along horizontal and vertical directions. Short-range contributions (P M P) are obtained by direct summation over nearby particles with a radius rc

circle). Long range contributions (P M M) are obtained from the particle–mesh method.
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overcome this problem by adopting the method proposed by Shan et al. [29]. This method is based on the separability prop-
erty of the Gaussian, it allows us to spread the charge distribution in three one-dimensional operations instead of one three-
dimensional operation. This reduces the number of operation steps to 3 � Ng instead of N3

g , where Ng is the number of grids
within the cutoff range in one direction. Implementation of this method dramatically reduces the computational time asso-
ciated with second charge assignment and therefore allows us to use a finer mesh or larger cutoff distance to improve the
accuracy.

The Poisson equation for the electrostatic potential (Eq. (6)) is solved using an iterative multi-grid approach. Thus the ini-
tial values of the potential play a key role in improving the efficiency of the solver. Better initial values mean fewer iteration
steps. In our code, as in [24], we store the potential at two previous time steps and use an Euler forward scheme to obtain a
good initial guess:
/ðtÞ ¼ /ðt � DtÞ þ /ðt � DtÞ � /ðt � 2DtÞð Þ: ð8Þ
After solving for the electric potential /, the electric field on the grid points can be calculated by taking the derivative of /
using the second-order centered-difference,
EðRÞ ¼ �r/ðRÞ: ð9Þ
Then the electric field E(ri) at ri can be obtained by linear interpolation from the eight nearest mesh points using exactly
the same approach as in the first step of the charge assignment. The long-range particle force on particle i is then:
FPM
i ¼ qiEðriÞ: ð10Þ
Finally the total Coulomb force from particles near particle i in Eq. (4) can be computed as:
FC
i ¼
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where Xi,C defines the interaction domain according to the Coulomb cutoff rc,C and erf (x) is the error function. The last two
terms in Eq. (11) represent the correction force and are derived from the second charge Gaussian assignment.

2.3. Multi-grid solver for Poisson equation

Since we have to solve the Poisson equation for the electric potential at every time step, an efficient and robust Poisson
solver is crucial for the total performance of the P3M scheme. Beckers et al. [24] adopted the conventional SOR method to solve
the Poisson equation in their P3M scheme, while more recently Aboud et al. [30] implemented a multi-grid Poisson solver in
their P3M scheme to simulate ionic liquids. Using their scheme, they have successfully calculated the thermodynamic prop-
erties of electrolyte solutions and examined the charge distribution profile for systems containing a lipid membrane. In our
algorithm, we also use a multi-grid Poisson solver due to its superior convergence properties relative to the SOR method.

The multi-grid method is a well-established approach for solving differential equations in an iterative way. Implementa-
tion of the multi-grid method with different discretizations of the domains can be found in Refs. [31–34]. In principle, the
discretized Poisson equation is solved on a hierarchy of mesh points with varying sizes. The central procedure in the mul-
ti-grid method is the so-called V-cycle. It contains three major operations: smoothing on each level of grids, restriction from
fine to coarse grids and prolongation from coarse to fine grids. Since the equations are solved on different levels of grids at
each step, the errors associated with different Fourier modes at different scales can be reduced simultaneously. As a result,
the multi-grid method has a much better convergence rate than the SOR method. Another attractive merit of the multi-grid
method is that because the method solves the equations on multiple scales, it can naturally be incorporated into multiscale
simulation methods. Building on our previous multiscale schemes for simple fluids [42,45] and the multi-grid approach pre-
sented here, we are currently developing a novel methodology for systems involving long-range electrostatic interactions
based on the idea of ‘‘domain decomposition” and ‘‘constrained dynamics”.

2.4. Boundary conditions

Our goal is to solve the equations for slablike geometries with periodic boundary conditions in the plane of the solid walls.
Methods for treating boundary conditions in the non-periodic direction have been a research topic for many years. A two-
dimensional Ewald summation method (EW2D) was first introduced by Parry [35] and was considered to be the most accu-
rate. However, a direct application of the EW2D method has proved to be very computationally expensive [36–38]. An alter-
native approach is to extend the non-periodic direction to create a sufficiently large empty space and then impose periodic
boundary conditions in all three directions. The conventional techniques for solving electrostatic fields such as the three-
dimensional Ewald summation method (EW3D) and the P3M method can then be employed. The purpose of including empty
space in the non-periodic direction is to avoid artificial effects caused by interactions between periodic images in that direc-
tion. However, as pointed out in Ref. [38], even though results from EW3D with periodic boundary conditions in all three
directions slowly converge to results from EW2D as the empty space in the non-periodic direction increases, the conver-
gence is unsatisfactory even when the total length in the non-periodic direction is five times larger than the length in the
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periodic directions. This means that it is impractical to extend the length in the non-periodic direction and use periodic
boundary conditions to obtain satisfactory results.

Yeh and Berkowitz [39] proposed a simple and efficient method for treating systems with slab geometries. In their meth-
od, the non-periodic dimension (e.g. the z direction in our case) was first extended to create some empty space, then the
periodic boundary conditions were applied in all three directions to calculate interparticle forces. Finally, a correction force
was added to each particle to remove the artifacts from the image charges due to periodic boundary conditions. Based on
their derivation, the correction force can be calculated as:
Fig. 3.
are com
Fx;i ¼ Fy;i ¼ 0; ð12Þ

Fz;i ¼ �
qi

V
Mz; ð13Þ
where V is the volume of the computational domain and Mz is the z component of the dipole moment of the whole system.
They demonstrated their method through calculation of forces between two particles and they could reproduce the EW2D
results using the EW3D method plus the correction. They also suggested an empty space of at least Lx or Ly for their method
to work. In our algorithm we adopt their method due to its simplicity and efficiency.

3. Results and discussions

3.1. Verification of the algorithm

To verify our P3M scheme for long-range Coulomb interactions and the treatment of the boundary conditions for slablike
geometries, we calculate the Coulomb force between two particles with opposite charges. This is considered to be the most
straightforward and accurate test of different treatments for the long-range force and has also been used in Refs. [38,39].

Periodic boundary conditions are imposed in the x and y directions with periods Lx = 10.43r and Ly = 12.04r, respectively.
The dimension in the z direction is Lz = 4Lx = 41.72r. As discussed in Section 2.4, we first calculate forces assuming periodic
boundary conditions along z and then subtract the effect of periodic images using the correction in Eq. (13). The accuracy of
the P3M approach can always be improved by refining the mesh size or increasing the cutoff distance rc,C, but this increases
the computational cost. In this test of the algorithm we use the same parameters as in later simulations. The mesh size is
about 1r and the cutoff is rc,C = 8r.

We present results for two charges separated by z and placed at (Lx/2,Ly/2,Lz/2 + z/2) and (Lx/2,Ly/2,Lz/2 � z/2), but similar
results were obtained for other separation directions. Fig. 3 shows the force as a function of separation before (triangles) and
after (squares) correcting for periodic boundary conditions. At small separations, both results approach the bare Coulomb
force Fz = e2/(4p�r�0r2) (solid line). When the separation becomes large compared to Lx and Ly, the interaction between the
periodic images of the charges becomes equivalent to the interaction between two charged surfaces. The force approaches
a constant that can be calculated analytically: Fz = e2/(2�r�0LxLy). After correcting with Eq. (13), the numerical results are in
z/σ

F z
(4

πε
rε 0

σ2
)/e

2
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Periodic BC with Correction
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Force between two charges as a function of distance. Numerical results before (triangles) and after (squares) correcting for periodic images along z
pared to the bare Coulomb interaction (solid line) and analytic limit e2/2�0�rLxLy(dashed line) for large separations.
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excellent agreement with this asymptotic result (dashed line). Merely increasing the empty space without applying the cor-
rection does not lead to accurate results. When the correction is included, an empty space on the order of the larger of Lx and
Ly is sufficient for good numerical results as concluded in Ref. [39].

3.2. Electroosmotic flows in nanoscale rough channels

Roughness on solid walls is ubiquitous in nature. It is now well accepted that this roughness can dramatically affect nano-
scale flows [40]. The many applications of electroosmotic flows have inspired recent studies of the effect of roughness on
electroosmotic flows using continuum methods [6,7,11]. These methods may fail at the nanoscale due to the inherent
assumptions in continuum equations. To overcome these limitations, Kim and Darve [14] and Qiao [17] have performed
molecular simulations of electroosmotic flows in rough channels. They constructed the roughness as regular squares on
top of the walls and found that the charge distribution and flow rate could be significantly affected by the roughness. How-
ever a systematic study of the effect of surface charge density and the structure of the roughness was not presented in these
papers. In this section, we will implement our P3M approach to simulate electroosmotic flows in rough channels and attempt
to address these and related issues.

3.2.1. Rectangular bumps
Fig. 4 illustrates the geometry for our first studies of flow in a rough channel. The fluid is confined between two walls with

a separation distance of H. Nanoscale rectangular bumps are added to both the bottom and top walls. These bumps extend
across the system in the y direction, have width w along x, and height h. They are constructed by extending the lattice struc-
ture of smooth walls. As a result, the height takes on discrete values of h = n�dz, where dz = 0.98r is the distance between two
successive layers and n = 1, 2 . . . is the number of added layers.

The region between the two vertical dotted lines in Fig. 4 is the simulation domain. Periodic boundary conditions with
period of Lx = 28.2r and Ly = 9.6r are imposed along x and y directions, respectively. The channel height is fixed at
H = 32.4r. The mesh domain in calculations of the electrostatic force is Lx by Ly by Lz = 2H in x, y and z directions. The flow
is driven by an external electrical field E which is parallel to the x direction. We set both the fluid and solid density at
0.81mr�3. A wall fluid interaction of �wf = 0.6� is chosen so that the system satisfies the no-slip boundary condition that
is commonly assumed in continuum models.

At the start of the simulations, we randomly choose 50 fluid particles and assign them a positive charge +e. We then
charge the solid walls to maintain an electrically neutral system. The required surface charge density rs = �0.092e/r2 is
in the experimental range. For flat walls, all of the innermost atoms have equal charges. The same charge is used for rough
walls, and charge is not applied to the sides of the bumps. Separate simulations showed that charging the sides had negli-
gible effect on the flow for our simulation parameters.

To quantify the effects of wall roughness on electroosmotic flow, a series of simulations with varying h and w were carried
out. The flow rate is computed for each case and compared with the smooth wall result. The volume flow rate per unit width
along the y direction is defined as the integral of the velocity over the height of the channel:
Fig. 4.
space b
Q ¼
Z H

0
uðzÞdz; ð14Þ
where u is the x component of the velocity. In the limit of low driving field E, one expects linear response, Q / E. We nor-
malize results for rough walls by the smooth wall flux Qsmooth and find the ratio is independent of E in the small field limit.
As shown below, the flux required to reach this limit is surprisingly small for electroosmotic flows.

For reference purposes, we also performed pressure driven (Poiseuille) flow simulations for exactly the same geometries.
A pressure gradient is realized by adding a constant force �v dP

dx along the x direction to each particle, where v is the volume
z

x

y
w

E

h

B

H

BA

A

Schematic of the channel flow geometry. The rectangular bumps on the walls and their dimensions are indicated. One period corresponds to the
etween dotted lines and the velocity field along the line A–A is shown in Fig. 6.
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per particle. The resulting velocity field is consistent with the analytic solution of the Navier–Stokes equations for Poiseuille
flow with flat walls and no-slip boundary conditions:
Fig. 5.
(triangl
Statistic
differen
case of
uðzÞ ¼ 1
2l

� dP
dx

� �
ðHz� z2Þ; ð15Þ
where u is along the x axis, l is the dynamic viscosity and H = 32.4r is the width of the channel. The viscosity l = 2.14�sr�3

has been calculated in our previous work [41,42]. We apply a pressure gradient dP
dx ¼ �0:015�r�4 so that the fluid velocity at

the center of the channel is about 0.9r/s.
Fig. 5 shows the variation of flow rate with the height of the roughness h for electroosmotic and pressure driven flow. In

all cases the width of the roughness is fixed at w = 5.21r. Both the electroosmotic and pressure driven flows decrease with
increasing roughness height. For pressure driven flow, Q decreases roughly linearly with h. Electroosmotic flow drops more
dramatically with increasing h. A bump just two layers high reduces the flow by more than 50%. Additional roughness leads
to a more gradual drop in flow. As discussed below, the range of h where electroosmotic flow drops rapidly corresponds to
the width d of the charge density, while the only length scales in pressure driven flow are the channel dimensions.

The results for electroosmotic flow have converged to the limiting Newtonian behavior for the smallest flux, Q = 2.26r2/s.
Increasing the driving field leads to a nonlinear increase in Qsmooth and also increases the effect of the roughness. The medium
and large fields are factors of 2.5 and 4 times larger than the low field case, while Qsmooth increases by factors of 2.76 and 7.69,
respectively. In contrast, the pressure driven flow was linear in dP/dx up to much larger fluxes. Results are not shown, but
this is consistent with previous studies [43].

The greater sensitivity of electroosmotic flow to roughness and flow rate is connected to the distribution of the driving
force and thus derivatives of the flow field. Sample flow fields for pressure and electroosmotic flows are illustrated in Fig. 6.
The pressure gradient provides a uniform force and thus a constant curvature in the flow profile (Eq. (15)). The electroos-
motic driving force is proportional to the charge density. As shown in Fig. 7, this is sharply peaked near the surface. The
resulting flow profile shows a rapid increase in the vicinity of the charge peak, and plug-like flow in the center of the channel.
For both types of flow, the velocity gradient is highest near the wall, and non-Newtonian behavior is observed when this
gradient, rumax, exceeds a common threshold value. However the threshold is always reached at lower fluxes for electroos-
motic flow. For this case, the maximum derivative rumax � d�1(Q/H), where d � r is the distance over which the velocity
rises and Q/H is the mean velocity in the channel. For pressure driven flow rumax = 6H�1(Q/H). Thus the mean velocity for
non-Newtonian effects is independent of H for electroosmotic flow, and increases linearly with H for pressure driven flow.
This very different scale dependence of the onset of non-Newtonian flow may be an important consideration in device
design.

For the parameters used here and in earlier work [43] the threshold value ofrumax is about 0.1s�1. The threshold may be
much lower near the wall for other interactions [44]. We found that high velocity gradients also led to changes in the width
h/H

Q
/Q

sm
oo
th

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

Sensitivity to roughness height for pressure driven flow (squares) and electroosmotic flow at small (circles), medium (diamonds) and large
es) driving fields. Flows are normalized by the flux between smooth walls and the surface charge density for electroosmotic flow is �0.092e/r2.
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a single layer bump that is considered in Fig. 6.
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Fig. 6. The streamwise velocity profile for pressure driven flow between smooth walls (open squares connected by solid line) and electroosmotic flow
between smooth walls (solid line) and at A–A (Fig. 4) for rough walls (filled squares). Results are for a bump one atomic layer high (arrow in Fig. 5) and are
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Fig. 7. Charge density profiles for smooth wall cases at different surface charge densities, �0.046e/r2 (dash line) and �0.092e/r2 (solid line), for lB = 7.86r.
Results for �0.092e/r2 and a higher �r corresponding to lB = 2.55r (dotted line), are also shown. The oscillations at small z are associated with layering in the
fluid, with the first layer extending to z � 1.5r. The charge density near flat sections of rough walls is nearly identical.
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of the charge distribution near flat walls. This represents an additional origin for non-Newtonian behavior in electroosmotic
flows that does not have a direct parallel in pressure driven flows. This effect began at about the same velocity gradient as
other non-Newtonian effects for the parameters used here, but may occur at smaller gradients in other systems.

The greater sensitivity of electroosmosis to roughness is also related to the concentration of the driving force near the
wall. Changes in channel width produce small perturbations on the flow profile for pressure driven flow. For electroosmotic
flow, the region of high velocity gradient follows the region of high charge and shifts by a height comparable to its width
even for a bump that is one atomic layer high. This rapid change in velocity field leads to a large stress. One consequence
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is that the central velocity on a line (A-A in Fig. 4) between bumps on a rough wall in Fig. 5 is 25% smaller than that for
smooth walls even though the driving force and charge density are indistinguishable. This is discussed further below.

The bump width w also has very different effects on electroosmotic and pressure driven flow. Fig. 8 shows the flux for
varying w at a fixed height of h = 2.95r (three layers) and with Q in the Newtonian limit. One might expect the flow rate
to decrease with increasing w because the mean width of the channel is decreased. Results for pressure driven flow are con-
sistent with this expectation, but electroosmotic flow is nearly independent of w. This can be understood from the flow pro-
files in Fig. 6. The flux increases as the cube of the wall spacing for pressure driven flow. If the bump covered the entire wall,
the flux would be reduced by a factor of [(H � 2h)/H]3 = 0.55. The results for pressure driven flow in Fig. 8 drop towards this
limiting value as w increases.

The flux increases only linearly with wall spacing for electroosmotic flow, so a uniform reduction in channel width by 2h
would only reduce the flux by (H � 2h)/H = 0.82. The actual flux is less than half this estimate, and nearly independent of w.
This implies that most of the decrease in flux is caused from dissipation at the edge of the bump. Direct evaluation of the drag
force from the fluid on the wall confirms that this is the case. The drag on the atoms nearest the corner is orders of magnitude
larger than that on flat regions.

The scaling of flux with H is also very different for pressure driven and electroosmotic flow. For pressure driven flow, the
only length scales are set by the channel dimensions (assuming no-slip boundary conditions). We performed simulations to
check that if H and Lx are scaled by the same factor the effect of roughness depends only on h/H and the results collapse on
those plotted in Fig. 5. For electroosmotic flow there is an additional length scale d corresponding to the width of the charge
distribution and the range of large velocity gradient. We found that Q/Qsmooth was nearly independent of H for a given bump
height, indicating that h/d is the key dimensionless parameter.

As a further test, we have varied d by changing the charge density rs and by increasing the dielectric constant to reduce
the relative strength of Coulomb interactions. Fig. 7 shows that the charge density exhibits oscillations that correlate with
the layering induced in the total fluid density by the solid walls. Increasing rs increases the total charge density, but also
decreases d. For jrsjP 0.138e/r2 (not shown), more than 90% of charge is in the first layer (z < 1.5r). In contrast, increasing
�r by a factor of 3 (lB = 2.55r) lowers the confining effect of Coulomb forces and increases d. For this case there is significant
density out to 4 or 5 layers.

These trends in charge distribution can be understood in terms of continuum Poisson–Boltzmann (PB) theory. The char-
acteristic length for the charge density to decay is the Gouy–Chapman length z0 � 1/(2plBjrsj). This length shows the
trends in Fig. 7, rising as either lB or jrsj decrease. However, z0 remains lower than a lattice constant for the parameters
considered in this paper, and PB theory does not include layering, so it is difficult to make a quantitative comparison be-
tween z0 and d.

Fig. 9 shows that changes in d have the expected effect on the dependence of flow rate on roughness height. For the high-
est charge densities, nearly all the charge is in the first layer and most of the reduction in Q occurs for bumps only two layers
high. Results for the lowest charge density and for lB = 2.55r decrease roughly linearly, although with a steeper slope than for
w/Lx

Q
/Q

sm
oo
th

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

Fig. 8. Variation of flow rate with bump width w at h = 2.95r and the same parameters as Fig. 5. Squares are for pressure driven flow and triangles are for
electroosmotic flow at rs = �0.092e/r2. Statistical errors are smaller than the symbol size.
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Fig. 9. Variation of flow rate with roughness height h for cases with different d obtained by varying rs and lB. Results are for lB = 7.86r and rs = �0.046e/r2

(open diamonds), rs = �0.092e/r2 (open triangles), rs = �0.138e/r2 (open inverted triangles), and rs = �0.184e/r2 (open circles), and for lB = 2.55r at
rs = �0.092e/r2 (filled triangles). The pressure driven flow results from exactly the same geometries are also shown for reference (open squares). Statistical
errors are smaller than the symbol size.
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pressure driven flow. Once more, studies for different H show that results for Q/Qsmooth for electroosmotic flow are indepen-
dent of H while pressure driven flow depends only on h/H. This brings out the importance of varying d, h and H indepen-
dently. For sufficiently small H and large d, the different scaling of pressure driven and electroosmotic flow would not be
evident.

The above arguments would suggest that pressure driven flow is more sensitive to reductions in channel width, while
electroosmotic flow is more sensitive to sudden changes in wall height. We have tested this with simulations where the
mean channel width is the same, but there are two equally spaced bumps of the same height instead of a single bump with
twice the length. For the case of rs = �0.092e/r2 and lb = 7.86r, breaking the bump into two pieces reduces the pressure dri-
ven flux by only 7%, while the electroosmotic flux drops by 40%. This pronounced contrast implies that surface smoothness
may be critical in electroosmotic devices.
Fig. 10. Geometry of channel with randomly rough walls. The number of additional layers at each point is uniformly distributed so the height changes from
0 to h. In this case h = 2.95r.
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3.2.2. Random roughness
The above simulations considered regular rectangular bumps rather than the irregular and random roughness that is

more likely to be found on experimental surfaces. In this section we consider a simple model for a random rough wall.
The height at each coordinate (x,y) in the plane of the wall varies from 0 to nh layers, with the heights determined from a
uniformly distributed random number generator. This method is easy to implement, and can be improved to be closer to
reality by incorporating height correlations. Fig. 10 shows a typical channel with random roughness on both top and bottom
walls.

Fig. 11 shows a comparison between random roughness and rectangular bumps at a surface charge density of
rs = �0.092e/r2. The regular bump has w = Lx/2 so that the mean height of both surfaces is h/2. The randomly rough walls
clearly reduce the flow more than regular bumps. This may be expected from the earlier observation that two bumps with
half the width slowed flow much more than a single wide bump. The flow rate is actually similar to the two bump case with
the same mean height even though the height changes much more frequently. This suggests that local height changes that
allow flow around obstacles in the y direction are less effective in blocking flow than obstacles that extend along y.

As pointed out above, the randomly rough wall in our simulations has no correlations in local height. Recently Wang and
Kang [46] proposed a novel strategy to generate random rough walls based on the random generation-growth method in
porous media. They have systematically discussed the random structure effect on electroosmotic channel flows using con-
tinuum flow models. It would be interesting to extend these studies to molecular scales using our method.
4. Conclusions

We have developed an efficient algorithm for molecular simulation of electrokinetic flows. In this algorithm we calculate
the long-range Coulomb interactions using the P3M method and the Poisson equation for electric potential distribution is
solved in physical space using an iterative multi-grid technique. Compared with the traditional SOR method, the multi-grid
method has a much better convergence rate and its computational cost scales as O(NG). We have further improved the effi-
ciency of the algorithm by reducing the computational time associated with the second charge assignment step based on the
separability of Gaussians. Another advantage of using the multi-grid Poisson solver is that the whole scheme can be naturally
embedded into multiscale hybrid schemes based on ‘‘domain decomposition”. We are currently developing multiscale hy-
brid methods for problems involving long-range interactions.

The algorithm was used to study electroosmotic flow in nanochannels with regular or random roughness. Results for reg-
ular rectangular bumps show several differences between pressure driven and electroosmotic flow that may be important in
device operation. One is that non-Newtonian flow sets in at a much lower volume flux for electroosmotic flow. Electroosmo-
sis produces a high velocity gradient confined to a region of width d near the walls, while pressure driven flow has a para-
bolic profile. Non-Newtonian behavior sets in at the same value of the velocity gradient in both cases, but the ratio between
electroosmotic and pressure driven fluxes (or mean velocities) needed to reach this criterion scales as d/H. The maximum
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flux in the Newtonian regime scales only as H for electroosmotic flow, but as H2 for pressure driven flow, and this may con-
strain electroosmotic devices as the channel width increases.

Roughness also produced much more dramatic changes for electroosmotic flow than pressure driven flow. Pressure-dri-
ven flow dropped roughly linearly with roughness height, while electroosmotic flow dropped abruptly and was cut in half by
bumps only two molecular layers high in many cases. The origin of this difference was determined by varying the width w
and height h of the bumps, as well as the channel width H and width of the charge distribution d. The latter shows the same
trends as the Gouy–Chapman length of Poisson–Boltzmann theory, but is too short for quantitative comparison of the charge
density with continuum theory.

Since the fluid exhibits no-slip boundary conditions, the only lengths controlling pressure driven flow are the channel
dimensions. Increasing h and w constricts flow by reducing the effective channel width. The net flux is roughly equal to
the value obtained by averaging over channel widths along the wall, and results for Q/Qsmooth for different H collapsed when
plotted in terms of h/H.

The ratio of the roughness height h to the width of the charge distribution d plays the key role in electroosmotic flow. For
the first case considered here (Fig. 5), most of the charge was in the first fluid layer. Bumps only one or two molecular layers
high diverted the entire region of high velocity gradient, leading to significant drag. The drag nearly doubled when a single
bump was replaced by two with half the width, and very large forces were exerted on atoms near the sides of the bumps.
Increasing d by lowering the surface charge or increasing the dielectric constant (lowering lB), increased the roughness height
needed to produce significant drag. In contrast to pressure driven flow, changes in channel width H had little effect on the
ratio of fluxes for smooth and rough walls.

Experimental surfaces are more likely to have random roughness than regular bumps. Studies of simple randomly rough
surfaces showed that they reduced electroosmotic flow more than bumps. This may be expected from the greater sensitivity
of electroosmotic flow to height changes rather than channel constriction. This pronounced contrast implies that surface
smoothness may be critical in electroosmotic devices. Studies considering different height correlations of the roughness
would provide further information about the factors that control device performance.
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